3. Arithmantik
Hausaufgaben 4
Hogwarts
Übersicht
Schulbücher
1.Erstklässler
1.Fliegen
Verteidigung
2. Arithmantik
2. Mag. Geschöpfe
2. Zauberschach
2.Wahrsagen
2. Zauberhomep.
2. Zauberkräuter
3.Arithmantik
3.Muggelkunde
3.Zaubertränke

 
Hausaufgabenseite
Hallo liebe Schüler,
jetzt habt ihr ja lange nichts mehr von mir gehört. Das lag daran, dass ein Virus mir einige Verknüfungen gelöscht hat und eure Briefe so gut versteckt, dass ich sie nicht wiederfinden konnte. Jetzt ist aber alles wieder in Ordnung. Auch wenn die Rechnungen im großen und ganzen verstanden worden sind, so sind dennoch viele Rechenfehler aufgetreten. Das Rechnen in wilden Systemen ist euch doch sehr schwer gefallen (zugegeben es ist wirklich schwer, daher nimmt man sonst ja auch die "ordentlichen" regelmäßigen Systeme.) Hauptfehler war, dass ihr mit der Anzahl der Sickel pro Galleone und der Anzahl der Knuts pro Sickel durcheinandergekommen seid. Ist mir zugegebenermaßen auch schon passiert. Aber Lernziel war ja auch die Schwierigkeiten dieser Systeme kennenzulernen...

Schauen wir uns also an was ihr mir so gemailt hat. Übrigens mal wieder ein Kompliment, ein ganzes Hogwartsjahr die Energie zu den Hausaufgaben beizubehalten ist schon ne tolle Leistung!

Nochmal zur Wiederholung :

1 Galleone = 17 Sickel
1 Sickel = 29 Knuts

Richtige Lösungen habe ich erhalten von Heir of Slytherin, Voldemort2001 aus ??? (ich vermute noch immer Slytherin; Voldemort ist übrigens erst 12 Jahre alt. Prima oder? Ich vermute damit mal, dass er mein jüngster Schüler ist. Oder gibt’s noch jüngere?), Perle86 aus Gryffindor, Fleurette aus Ravenclaw und HolgerV aus ???

Ich benutze mal die Rechnung von Heir, der die Rechnungen meiner Meinung nach sehr schön ausführlich beschrieben hat und ergänze dann Einzelheiten aus anderen mails:

  1. Hermine, Ron und Harry besitzen alle 1 Galleone, C Sickel und 6 Knuts. Wieviel haben sie zusammen?


  2. 1 Galleone, C Sickel und 6 Knuts  = 17*29+12*29+6 (Mu) Knuts
     = 847 (Mu) Knuts

    847 (Mu)*3 = 2541 (Mu)

    2541 (Mu) = 87 (Mu) Sickel und 18 (Mu) Knuts
     = 5 (Mu) Galleonen, 2 (Mu) Sickel und 18 (Mu) Knuts
     = 5 Galleonen, 2 Sickel und I Knuts (alles Za)

    A.: Sie haben zusammen 5 Galleonen, 2 Sickel und I Knuts.

  3. Hermine kauft für 2 Sickel BertieBottsBohnen aller Geschmacksrichtungen, Ron für B Knuts ein neues Schulheft und Harry für 1 Galleone, B Sickel und 3 Knuts einen neuen Zauberbesen, den Nimbus2001.


  4. 2 Sickel + B Knuts + 1 Galleone, B Sickel und 3 Knuts = 1 Galleone, D Sickel und E Knuts

  5. Wieviel haben sie noch gemeinsam übrig? Können sie noch ins Kino gehen, wenn sie sich gegenseitig Geld leihen würden? (Kino kostet für Hogwartsschüler A Sickel)

    5 Galleonen, 2 Sickel und I Knuts 1 Galleone, D Sickel und E Knuts
      = 3 Galleonen, 6 Sickel und 4 Knuts

    (von Perle86)
        sie haben noch übrig:
        3 Galleonen, 6 Sickel und 4 Knuts

        Harry hat noch: 1Sickel und 3 Knuts
        Hermine hat noch: 1 Galleone, 10 Sickel unhd 6 Knuts
        Ron besitzt noch:1 Galleone , 11 Sickel und 24 Knuts


    3*A Sickel =1 Galleone, D Sickel

    3 Galleonen, 6 Sickel und 4 Knuts - 1 Galleone, D Sickel =
       1 Galleone, A Sickel und 4 Knuts

    A.: Sie können noch ins Kino gehen. Anschließend haben sie noch 1 Galleone, A Sickel und 4 Knuts übrig.


Christine aus Gryffindor trägt für uns noch eine Umrechnung des Zaubergeldes in Muggelgeld bei. Allerdings in englische Pfund. Ich habe jetzt nicht geguckt wie viel das in DM ist.

Der Eintritt kostet nicht einmal ein halbes Pfund. Ich habe dies ausgerechnet. Im Buch "Fantastische Tierwesen und wo sie zu finden sind" , steht, dass 34.000.872 Galleonen, 14 Sickel, und 7 Knuts ungefähr 174 Millionen Pfund entsprechen! Wenn man die 34.000.872 Galleonen, 14 Sickel und 7 Knuts durch 174 Millionen Pfund teilt, erfährt man wie viel genau eine Galleone in Pfund ist.

Nun kommen wir zur Kür. Wieder gab es Schüler die über den Schulstoff hinaus Beiträge geleistet haben. Kaba aus Slytherin hat zum Beispiel noch eine Multiplikationstabelle beigesteuert. Es ist eine ganz einfache Tabelle, aber besser als gar nichts. An der Anzahl der Felder sieht man schon wie viel Arbeit dahinter gesteckt haben muss sie auszurechnen.

Das Ein-mal-Eins der Zauberersystems

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

1

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

2

2

4

6

8

A

C

E

G

I

K

M

O

Q

S

U

W

Y

10

12

14

16

18

1A

1C

1E

1G

1I

1K

1M

1O

1Q

1S

1U

1W

1Y

3

3

6

9

C

F

I

L

O

R

U

X

10

13

16

19

1C

1F

1I

1L

1O

1R

1U

1X

20

23

26

29

2C

2F

2I

2L

2O

2R

2U

2X

4

4

8

C

G

K

O

S

W

10

14

18

1C

1G

1K

1O

1S

1W

20

1L

28

2C

2G

2K

2O

2S

2W

30

34

38

3C

3G

3K

3O

3S

3W

5

5

A

F

K

P

U

Z

14

19

1E

1J

1O

1T

1Y

23

28

2D

2I

2N

2S

2X

32

37

3C

3H

3M

3R

3W

41

46

4B

4G

4L

4Q

4V

6

6

C

I

O

U

10

16

1C

1I

1O

1U

20

26

2C

2I

2O

2U

30

36

3C

3I

3O

3U

40

46

4C

4I

4O

4U

50

56

5C

5I

5O

5U

7

7

E

L

S

Z

16

1D

1K

1R

1Y

25

2C

2J

2Q

2X

34

3B

3I

3P

3W

43

4A

4H

4O

4V

52

59

5G

5N

5U

61

68

6F

6M

6T

8

8

G

O

W

14

1C

1K

1S

20

28

2G

2O

2W

34

3C

3K

3S

40

48

4G

4O

4W

54

5C

5K

5S

60

68

6G

6O

6W

74

7C

7K

7S

9

9

I

R

10

19

1I

1R

20

29

2I

2R

30

39

3I

3R

40

49

4I

4R

50

59

5I

5R

60

69

6I

6R

70

79

7I

7R

80

89

8I

8R

A

A

K

U

14

1E

1O

1Y

28

2I

2S

32

3C

3M

3W

46

4G

4Q

50

5A

5K

5U

64

6E

6O

6Y

78

7I

7S

82

8C

8M

8W

96

9G

9Q

B

B

M

X

18

1J

1U

25

2G

2R

32

3D

3O

3Z

4A

4L

4W

57

5I

5T

64

6F

6Q

71

7C

7N

7Y

89

8K

8V

96

9H

9S

A3

AE

AP

C

C

O

10

1C

1O

20

2C

2O

30

3C

3O

40

4C

4O

50

5C

5O

60

6C

6O

70

7C

7O

80

8C

8O

90

9C

9O

A0

AC

AO

B0

BC

BO

D

D

Q

13

1G

1T

26

2J

2W

39

3M

3Z

4C

4P

52

5F

5S

65

6I

6V

78

7L

7Y

8B

8O

91

9E

9R

A4

AH

AU

B7

BK

BX

CA

CN

E

E

S

16

1K

1Y

2C

2Q

34

3I

3W

4A

4O

52

5G

5U

68

6M

70

7E

7S

86

8K

8Y

9C

9Q

A4

AI

AW

BA

BO

C2

CG

CU

D8

DM

F

F

U

19

1O

23

2I

2X

3C

3R

46

4L

50

5F

5U

69

6O

73

7I

7X

8C

8R

96

94

A0

AF

AU

B9

BO

C3

CI

CX

DC

DR

E6

EL

G

G

W

1C

1S

28

2O

34

3K

40

4G

4W

5C

5S

68

6O

74

7K

80

8G

8W

9C

9S

A8

AO

B4

BK

C0

CG

CW

DC

DS

E8

EO

F4

FK

H

H

Y

1F

1W

2D

2U

3B

3S

49

4Q

57

5O

65

6M

73

7K

81

8I

8Z

9G

9X

AE

AV

BC

BT

CA

CR

D8

DP

E6

EN

F4

FL

G2

GJ

I

I

10

1I

20

2I

30

3I

40

4I

50

5I

60

6I

70

7I

80

8I

90

9I

A0

AI

B0

BI

C0

CI

D0

DI

E0

EI

F0

FI

G0

GI

H0

HI

J

J

12

1L

24

2N

36

3P

48

4R

5A

5T

6C

6V

7E

7X

8G

8Z

9I

A1

AK

B3

BM

C5

CO

D7

DQ

E9

ES

FB

FU

GD

GW

HF

HY

ICH

K

K

14

1O

28

2S

3C

3W

4G

50

5K

64

6O

78

7S

8C

8W

9G

A0

AK

B4

BO

C8

CS

DC

DW

EG

F0

FK

G4

GO

H8

HS

IC

IW

JG

L

L

16

1R

2C

2X

3I

43

4O

59

5U

6F

70

7L

86

8R

9C

9X

AI

B3

BO

C9

CU

DF

E0

EL

F6

FR

GC

GX

HI

I3

IO

J9

JU

KF

M

M

18

1U

2G

32

3O

4A

4W

5I

64

6Q

7C

7Y

8K

96

9S

AE

B0

BM

C8

CU

DG

E2

EO

FA

FW

GI

H4

HQ

IC

IY

JK

K6

KS

LE

N

N

1A

1X

2K

37

3U

4H

54

5R

6E

71

7O

8B

8Y

9L

A8

AV

BI

C5

CS

DF

E2

EP

FC

FZ

GM

H9

HW

IJ

J6

JT

KG

L3

LQ

MD

O

O

1C

20

2O

3C

40

4O

5C

60

6O

7C

80

8O

9C

A0

AO

BC

C0

CO

DC

E0

EO

FC

G0

GO

HC

I0

IO

JC

K0

KO

LC

M0

MO

NC

P

P

1E

23

2S

3H

46

4V

5K

69

6Y

7N

8C

91

9Q

AF

B4

BT

CI

D7

DW

EL

FA

FZ

GO

HD

I2

IR

JG

K5

KU

LJ

M8

MX

NM

OB

Q

Q

1G

26

2W

3M

4C

52

5S

6I

78

7Y

8O

9E

A4

AU

BK

CA

D0

DQ

EG

F6

FW

GM

HC

I2

IS

JI

K8

KY

LO

ME

N4

NU

OK

PA

R

R

1I

29

30

3R

4I

59

60

6R

7I

89

90

9R

AI

B9

C0

CR

DI

E9

F0

FR

GI

H9

I0

IR

JI

K9

L0

LR

MI

N9

O0

OR

PI

Q9

S

S

1K

2C

34

3W

4O

5G

68

70

7S

8K

9C

A4

AW

BO

CG

D8

E0

ES

FK

GC

H4

HW

IO

JG

K8

L0

LS

MK

NC

O4

OW

PO

QG

R8

T

T

1M

2F

38

41

4U

5N

6G

79

82

8V

9O

AH

BA

C3

CW

DP

EI

FB

G4

GX

HQ

IJ

JC

K5

KY

LR

MK

ND

O6

OZ

PS

QL

RE

S7

U

U

1O

2I

3C

46

50

5U

6O

7I

8C

96

A0

AU

BO

CI

DC

E6

F0

FU

GO

HI

IC

J6

K0

KU

LQ

MI

NC

O6

P0

PU

QO

RI

SC

T6

V

V

1Q

2L

3G

4B

56

61

6W

7R

8M

9H

AC

B7

C2

CX

DS

EN

FI

GD

H8

I3

IY

JT

KO

LJ

ME

N9

O4

OZ

PU

QP

RK

SF

TA

U5

W

W

1S

2O

3K

4G

5C

68

74

80

8W

9S

AO

BK

CG

DC

E8

F4

G0

GW

HS

IO

JK

KG

LC

M8

N4

O0

OW

PS

QO

RK

SG

TC

US

V4

X

X

1U

2R

3O

4L

5I

6F

7C

89

96

A3

B0

BX

CU

DR

EO

FL

GI

HF

IC

J9

K6

L3

M0

MX

NU

OR

PO

QL

RI

SF

TC

U9

V6

W3

Y

Y

1W

2U

3S

4Q

5O

6M

7K

8I

9G

AE

BC

CA

D8

E6

F4

G2

H0

HY

IW

JU

KS

LQ

MO

NM

OK

PI

QG

RE

SC

TA

U8

V6

W4

X2

Z

Z

1Y

2X

3W

4V

5U

6T

7S

8R

9Q

AP

BO

CN

DM

EL

FK

GJ

HI

IH

JG

KF

LE

MD

NC

OB

PA

Q9

R8

S7

T6

U5

V4

W3

X2

Y1



Außerdem gibt es Überlegungen zu der von Kaba gestellten Aufgabe mit den Quadratzahlen. Sie fragte warum nur die Endungen 0,1,4,9,G,P,D,S,9 auftreten. Übrigens zuerst in dieser Reihenfolge, dann rückwärts, dann wieder in dieser Reihenfolge usw..... (Currant gab den Punkten 0 und 9 übrigens den schönen Namen "Kabasche Umkehrpunkte". Gefällt mir gut...)

Die schlaue_Hermine aus Gryffindor machte eine ähnliche Entdeckung im Muggelsystem. Die Erklärung ist noch nicht vollständig, aber wir sammeln ja noch.

Die Endziffern beim Muggelsystem verhalten sich auch so! Es gibt nur die
Endziffern:
1
4
9
6
5
0
Das liegt daran, dass es nur 9 (bzw 10) verschiedene Ziffern im Muggelsystem gibt.
Demnach können auch nicht allzu viele verschiedene Endziffern bei den Quadratzahlen herauskommen.
Dadurch dass im Zauberersystem mehr Ziffern vorkommen, gibt es ein paar mehr Endziffern.

Die Herangehensweise von Hermine ist vorbildlich, sie sammelt erst mal Erfahrungen und probiert in anderen Systemen aus. Mal sehen wer nun den nächsten Schritt liefern kann und erste Vermutungen bringen warum das so sein könnte oder sogar eine Begründung oder einen Beweis.

Currant hat mir übrigends inzwischen schon einen Beweis für die Kabasche Vermutung geliefert, aber bisher habe ich ihn noch nicht vollständig verstanden. Außerdem ist er so formal, dass ich ihn höchtens mal vorstelle um zu zeigen dass anscheinend auch Mathematiker noch Spaß an Arithmantik haben und mit welchen Methoden sie vorgehen. Muss sich ja nicht jeder durchlesen.....Habe aber den Verdacht dass Currant nicht der einzige Mathematiker ist, der sich ab und zu auf meine Unterrichtsseite verirrt, da können die sich dann ja gegenseitig austauschen...*gg*. Vielleicht ganz zum Schluss gemeinsam mit einer anderen mail.

So das wars für heute!
Cu bis bald,
Eure Epsilona

3 Arith 2
3.Arith HA1
3 Arith 3
3 Arith-HA 2
3.Arith 4
3 Arith-HA3
3 Arith 5
3 Arith-HA4
3 Arith 6

[Hogwarts] [3.Arithmantik] [3 Arith 2] [3.Arith HA1] [3 Arith 3] [3 Arith-HA 2] [3.Arith 4] [3 Arith-HA3] [3 Arith 5] [3 Arith-HA4] [3 Arith 6]